Hybrid Clustering and Routing Algorithm with Threshold-Based Data Collection for Heterogeneous Wireless Sensor Networks

Author:

Bilal MuhammadORCID,Munir Ehsan UllahORCID,Alarfaj Fawaz KhaledORCID

Abstract

The concept of the internet of things (IoT) motivates us to connect bulk isolated heterogeneous devices to automate report generation without human interaction. Energy-efficient routing algorithms help to prolong the network lifetime of these energy-restricted smart devices that are connected by means of wireless sensor networks (WSNs). Current vendor-level advancements enable algorithm-level flexibility to design protocols to concurrently collect multiple application data while enforcing the reduction of energy expenditure to gain commercial success in the industrial stage. In this paper, we propose a hybrid clustering and routing algorithm with threshold-based data collection for heterogeneous wireless sensor networks. In our proposed model, homogeneous and heterogeneous nodes are deployed within specific regions. To reduce unnecessary data transmission, threshold-based conditions are presented to prevent unnecessary transmission when minor or no change is observed in the simulated and real-world applications. We further extend our proposed multi-hop model to achieve more network stability in dense and larger network areas. Our proposed model shows enhancement in terms of load balancing and end-to-end delay as compared to the other threshold-based energy-efficient routing protocols, such as the threshold-sensitive stable election protocol (TSEP), threshold distributed energy-efficient clustering (TDEEC), low-energy adaptive clustering hierarchy (LEACH), and energy-efficient sensor network (TEEN).

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3