Comparative Analysis of In Vitro Models to Study Antibody-Dependent Enhancement of Zika Virus Infection

Author:

Langerak ThomasORCID,Mumtaz NoreenORCID,Koopmans MarionORCID,Schoenmakers Sam,Rockx BarryORCID

Abstract

During the 2015–2016 outbreak of Zika virus (ZIKV) in the Americas, a previously unknown severe complication of ZIKV infection during pregnancy resulting in birth defects was reported. Since the ZIKV outbreak occurred in regions that were highly endemic for the related dengue virus (DENV), it was speculated that antibody-dependent enhancement (ADE) of a ZIKV infection, caused by the presence of cross-reactive DENV antibodies, could contribute to ZIKV disease severity. Emerging evidence indicates that, while in vitro models can show ADE of ZIKV infection, ADE does not seem to contribute to congenital ZIKV disease severity in humans. However, the role of ADE of ZIKV infection during pregnancy and in vertical ZIKV transmission is not well studied. In this study, we hypothesized that pregnancy may affect the ability of myeloid cells to become infected with ZIKV, potentially through ADE. We first systematically assessed which cell lines and primary cells can be used to study ZIKV ADE in vitro, and we compared the difference in outcomes of (ADE) infection experiments between these cells. Subsequently, we tested the hypothesis that pregnancy may affect the ability of myeloid cells to become infected through ADE, by performing ZIKV ADE assays with primary cells isolated from blood of pregnant women from different trimesters and from age-matched non-pregnant women. We found that ADE of ZIKV infection can be induced in myeloid cell lines U937, THP-1, and K562 as well as in monocyte-derived macrophages from healthy donors. There was no difference in permissiveness for ZIKV infection or ADE potential of ZIKV infection in primary cells of pregnant women compared to non-pregnant women. In conclusion, no increased permissiveness for ZIKV infection and ADE of ZIKV infection was found using in vitro models of primary myeloid cells from pregnant women compared to age-matched non-pregnant women.

Funder

Netherlands Organisation for Health Research and Development

European Union’s Horizon 2020 Research and Innovation Programme

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3