Investigation of Dynamic Behavior of Ultra-Large Cold-Water Pipes for Ocean Thermal Energy Conversion

Author:

Zhang Yanfang1,Zheng Miaozi2,Zhang Li3,Zhang Chaofei4,Tan Jian4ORCID,Zhang Yulong5,Duan Menglan4

Affiliation:

1. Offshore Oil Engineering Co., Ltd., Tianjin 300451, China

2. State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China

3. Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524005, China

4. College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China

5. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Ocean Thermal Energy Conversion (OTEC) is a process that can produce electricity by utilizing the temperature difference between deep cold water and surface warm water. The cold-water pipe (CWP) is a key component of OTEC systems, which transports deep cold water to the floating platform. The CWP is subjected to various environmental and operational loads, such as waves, currents, internal flow, and platform motion, which can affect its dynamic response and stability. In this paper, we establish a computational model of the mechanical performance of the CWP based on the Euler–Bernoulli beam theory and the Morrison equation, considering the effects of internal flow, sea current, and wave excitation. We use the differential quadrature method (DQM) to obtain a semi-analytical solution of the lateral displacement and bending moment of the CWP. We verify the correctness and validity of our model by comparing it with the finite element simulation results using OrcaFlex software. We also analyze the effects of operating conditions—such as wave intensity, clump weight at the bottom, and internal flow velocity—on the dynamic response of the CWP using numerical simulation and the orthogonal experimental method. The results show that changing the wave strength and internal flow velocity has little effect on the lateral displacement of the CWP but increasing the current velocity can significantly increase the lateral displacement of the CWP, which can lead to instability. The effects of waves, clump weight, internal flow, and sea current on the maximum bending moment of the CWP are similar; all of them increase sharply at first and then decrease gradually until they level off. The differences in the effects are mainly reflected in the different locations of the pipe sections. This paper suggests some design guidance for CWP in terms of dynamic responses depending on the operating conditions. This paper contributes to the journal’s scope by providing a novel and efficient method for analyzing the mechanical performance of CWP for OTEC systems, which is an important ocean energy resource.

Funder

Southern Marine Science and Engineering Guangdong Laboratory

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3