Dynamics Differences between Minimal Models of Second and First-Order Chemical Self-Replication

Author:

Moseley Lauren A.1ORCID,Peacock-López Enrique1ORCID

Affiliation:

1. Department of Chemistry, Williams College, Williamstown, MA 01267, USA

Abstract

To further explore the origins of Life, we consider three self-replicating chemical models. In general, models of the origin of Life include molecular components that can self-replicate and achieve exponential growth. Therefore, chemical self-replication is an essential chemical property of any model. The simplest self-replication mechanisms use the molecular product as a template for its synthesis. This mechanism is the so-called First-Order self-replication. Its regulatory limitations make it challenging to develop chemical networks, which are essential in the models of the origins of Life. In Second-Order self-replication, the molecular product forms a catalytic dimer capable of synthesis of the principal molecular product. In contrast with a simple template, the dimers show more flexibility in forming complex chemical networks since the chemical activity of the dimers can be activated or inhibited by the molecular components of the network. Here, we consider three minimal models: the First-Order Model (FOM), the Second-Order Model (SOM), and an Extended Second-Order Model (ESOM). We construct and analyze the mechanistic dimensionless ordinary differential equations (ODEs) associated with the models. The numerical integration of the set of ODEs gives us a visualization of these systems’ oscillatory behavior and compares their capacities for sustained autocatalytic behavior. The FOM model displays more complex oscillatory behavior than the ESOM model.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Medicine

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3