Multiobjective Optimization of a Fed-Batch Bienzymatic Reactor for Mannitol Production

Author:

Maria GheorgheORCID,Renea Laura,Maria Cristina

Abstract

Enzymatic reactions can successfully replace complex chemical syntheses using milder reaction conditions and generating less waste. The developed model-based numerical analysis turned out to be a beneficial tool to determine the optimal operating policies of complex multienzymatic reactors. As proved, for such cases, the determination of a Fed-Batch Reactor (FBR) optimal operating policy results in a difficult multiobjective optimization problem. Exemplification is made for the bienzymatic reduction of D-fructose to mannitol by using MDH (mannitol dehydrogenase) and nicotinamide adenine dinucleotide (NADH) cofactor with the in situ continuous regeneration of NADH at the expense of formate degradation in the presence of FDH (formate dehydrogenase). For such a coupled system, the model-based engineering evaluations must account for multiple competing (opposable) optimization objectives. Among the multiple novelty elements: i) an optimally operated FBR with a tightly controlled variable feeding (of the time stepwise type) during the batch can lead to higher performance; ii) the optimally operated FBR reported better performance compared to an optimally single or cyclic BR, or to optimally serial batch-to-batch reactors (SeqBR), when considering a multiobjective optimization; iii) the concomitant variable feeding with substrate, enzymes, and cofactor during the FBR “time-arcs” is an option seldom approached in the literature but which is proved here, leading to consistent economic benefits.

Publisher

MDPI AG

Subject

General Medicine

Reference68 articles.

1. Industrial Biotransformations;Liese,2006

2. Applied Biocatalysis;Straathof,2005

3. Wikipedia, “Mannitol” https://en.wikipedia.org/wiki/Mannitol

4. Biotechnological production of mannitol and its applications

5. Challenges in Enzymatic Route of Mannitol Production

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3