Lid-Driven Cavity Flow Containing a Nanofluid

Author:

Alruwaele Wasaif H. R.1ORCID,Gajjar Jitesh S. B.2ORCID

Affiliation:

1. Department of Science and Technology, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia

2. Department of Mathematics, University of Manchester, Manchester M13 9PL, UK

Abstract

In this paper, we consider the flow of a nanofluid in an enclosed lid-driven cavity using a single-phase model. Two cases are considered: one in which the top and bottom walls are kept at adiabatic conditions, and a second case in which the left- and right-side walls are kept in adiabatic conditions. The impact of different viscosity models on the mixed convection heat transfer is examined, and numerical methods are used to obtain solutions for the Navier–Stokes equations for various parameter ranges. Using our robust methods, we are able to obtain novel solutions for large Reynolds numbers and very small Richardson numbers. Using water as the base fluid and aluminium oxide nanoparticles, our results suggest that heat transfer enhancement occurs with increasing particle concentration and decreasing Richardson numbers. There are also significant differences depending on the viscosity model used in terms of the impact of reducing corner recirculation regions in the cavity.

Publisher

MDPI AG

Reference23 articles.

1. Choi, S.U., and Eastman, J.A. (1995). Enhancing Thermal Conductivity of Fluids with Nanoparticles, Argonne National Lab.. Technical report.

2. Enhanced thermal conductivity through the development of nanofluids;Eastman;MRS Online Proc. Libr.,1996

3. Measuring thermal conductivity of fluids containing oxide nanoparticles;Lee;ASME J. Heat Mass Transf.,1999

4. Thermal conductivity enhancement of suspensions containing nanosized alumina particles;Xie;J. Appl. Phys.,2002

5. Temperature dependence of thermal conductivity enhancement for nanofluids;Das;J. Heat Transf.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3