Biomechanical Upper Limb Model for Postural Tremor Absorber Design

Author:

Gebai SarahORCID,Cumunel GwendalORCID,Hammoud MohammadORCID,Foret Gilles,Roze Emmanuel,Hainque Elodie

Abstract

The current work promotes the use of non-invasive devices for reducing involuntary tremor of human upper limb. It concentrates on building up an upper limb model used to reflect the measured tremor signal and is suitable for the design of a passive vibration controller. A dynamic model of the upper limb is excited by the measured electromyography signal scaled to reach the wrist joint angular displacement measured by an inertial measurement unit for a patient with postural tremor. A passive tuned-mass-damper (TMD) placed on the hand is designed as a stainless-steel beam with a length of 91 mm and a cross-sectional diameter of 0.79 mm, holding a mass of 14.13 g. The damping ratio and mass position of the TMD are optimized numerically. The fundamental frequency of the TMD is derived and validated experimentally through measurements for different mass positions, with a relative error of 0.65%. The modal damping ratio of the beam is identified experimentally as 0.14% and increases to 0.26–0.46% after adding the mass at different positions. The optimized three TMDs reduce 97.4% of the critical amplitude of the power spectral density at the wrist joint.

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing controllers for hand tremor suppression using model simplification;Biomedical Signal Processing and Control;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3