Affiliation:
1. Mechanics of Adaptive Systems Department, Ruhr University Bochum, 44801 Bochum, Germany
Abstract
This article aims to develop a new Adaptive Proportional Integral Derivative (PID) Nonsingular Dual Terminal Sliding Mode Control, designed for tracking the position of robot manipulators under disturbances and uncertainties. Compared with existing PID Nonsingular Fast Terminal Sliding Mode (PIDNFTSM) controllers, this work effectively avoids singularity problems in control while significantly enhancing the convergence speed of errors. An adaptive reaching law is proposed to estimate the bound information of the first derivative of lumped disturbance by regulating itself based on sliding variables. The overall system stability is proven by using the Lyapunov approach. Subsequent simulation results verify the effectiveness of the proposed controller regarding tracking error reduction, energy efficiency enhancements, and singularity avoidance.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献