Enhancing Bayesian Approaches in the Cognitive and Neural Sciences via Complex Dynamical Systems Theory

Author:

Favela Luis H.12ORCID,Amon Mary Jean3

Affiliation:

1. Department of Philosophy, University of Central Florida, Orlando, FL 32816, USA

2. Cognitive Sciences Program, University of Central Florida, Orlando, FL 32816, USA

3. School of Modeling, Simulation, and Training, University of Central Florida, Orlando, FL 32816, USA

Abstract

In the cognitive and neural sciences, Bayesianism refers to a collection of concepts and methods stemming from various implementations of Bayes’ theorem, which is a formal way to calculate the conditional probability of a hypothesis being true based on prior expectations and updating priors in the face of errors. Bayes’ theorem has been fruitfully applied to describe and explain a wide range of cognitive and neural phenomena (e.g., visual perception and neural population activity) and is at the core of various theories (e.g., predictive processing). Despite these successes, we claim that Bayesianism has two interrelated shortcomings: its calculations and models are predominantly linear and noise is assumed to be random and unstructured versus deterministic. We outline ways that Bayesianism can address those shortcomings: first, by making more central the nonlinearities characteristic of biological cognitive systems, and second, by treating noise not as random and unstructured dynamics, but as the kind of structured nonlinearities of complex dynamical systems (e.g., chaos and fractals). We provide bistable visual percepts as an example of a real-world phenomenon that demonstrates the fruitfulness of integrating complex dynamical systems theory in Bayesian treatments of perception. Doing so facilitates a Bayesianism that is more capable of explaining a number of currently out-of-reach natural phenomena on their own, biologically realistic terms.

Publisher

MDPI AG

Subject

General Medicine

Reference122 articles.

1. Simple mathematical models with very complicated dynamics;May;Nature,1976

2. Coordination dynamics in cognitive neuroscience;Bressler;Front. Neurosci.,2016

3. The free-energy principle: A unified brain theory?;Friston;Nat. Rev. Neurosci.,2010

4. Towards a network theory of cognition;McIntosh;Neural Netw.,2000

5. Edelman, G.M. (1987). Neural Darwinism: The Theory of Neuronal Group Selection, Basic Books.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3