Artificial Intelligence Modeling of the Heterogeneous Gas Quenching Process for Steel Batches Based on Numerical Simulations and Experiments

Author:

Narayan Nithin Mohan12,Landgraf Pierre Max3ORCID,Lampke Thomas3ORCID,Fritsching Udo124ORCID

Affiliation:

1. Leibniz Institute for Materials Engineering-IWT, Badgasteinerstraße. 3, 28359 Bremen, Germany

2. Faculty of Production Engineering, University of Bremen, Badgasteinerstraße. 3, 28359 Bremen, Germany

3. IWW, Chemnitz University of Technology, Erfenschlagerstraße. 73, 09125 Chemnitz, Germany

4. MAPEX Center for Materials and Processes, Am Biologischen Garten. 2, 28359 Bremen, Germany

Abstract

High-pressure gas quenching is widely used in the metals industry during the heat treatment processing of steel specimens to improve their material properties. In a gas quenching process, a preheated austenised metal specimen is rapidly cooled with a gas such as nitrogen, helium, etc. The resulting microstructure relies on the temporal and spatial thermal history during the quenching. As a result, the corresponding material properties such as hardness are achieved. Challenges reside with the selection of the proper process parameters. This research focuses on the heat treatment of steel sample batches. The gas quenching process is fundamentally investigated in experiments and numerical simulations. Experiments are carried out to determine the heat transfer coefficient and the cooling curves as well as the local flow fields. Quenched samples are analyzed to derive the material hardness. CFD and FEM models numerically determine the conjugate heat transfer, flow behavior, cooling curve, and material hardness. In a novel approach, the experimental and simulation results are adopted to train artificial neural networks (ANNs), which allow us to predict the required process parameters for a targeted material property. The steels 42CrMo4 (1.7225) and 100Cr6 (1.3505) are investigated, nitrogen is the quenching gas, and geometries such as a disc, disc with a hole and ring are considered for batch series production.

Funder

Economic Affairs and Climate Action

Publisher

MDPI AG

Reference33 articles.

1. Schmidt, R.R. (2013). Zur Thermo-Fluid-Dynamik beim Hochdruckgasabschrecken: Experimentelle und Numerische Analyse der Hochdruckgasabschreckung Metallischer Bauteile zur Steigerung von Prozesshomogenität und-Intensität. [Ph.D. Thesis, Fachbereich Produktionstechnik, Universität Bremen].

2. Evaluating Heat Transfer Conditions in Gas Cooling for Complex Specimen Geometries;Bucquet;HTM J. Heat Treat. Mater.,2014

3. Stephan, P., Kabelac, S., Kind, M., Mewes, D., Schaber, K., and Wetzel, T. (2018). VDI-Wärmeatlas (Fachlicher Träger VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen), Springer.

4. Finite Element Simulation and Optimization of Gas-Quenching Process for Tool Steels;Jung;J. Mater. Eng. Perform.,2018

5. Bucquet, T. (2017). Flow Conditioning in Heat Treatment by Gas and Spray Quenching. [Ph.D. Thesis, Produktionstechnik, Universität Bremen].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3