Computational Design for Multi-Optimized Geometry of Sustainable Flood-Resilient Urban Design Habitats in Indonesia

Author:

Maksoud Aref1ORCID,Alawneh Sarah Isam Abdul-Rahman1ORCID,Hussien Aseel1ORCID,Abdeen Ahmed1,Abdalla Salem Buhashima1ORCID

Affiliation:

1. Department of Architectural Engineering, College of Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates

Abstract

Unfortunately, flooding is a major worldwide problem that especially affects low-lying cities like Semarang, Indonesia. Therefore, this study focuses on the flood-prone areas of Semarang, where recurring high tides and surges from severe precipitation cause havoc. In order to create water-resistant dwelling topologies, the paper explores the early incorporation of computational design approaches. Ultimately, the objective is to explore the strategic application of generative design techniques to support the development of a highly adaptive urban environment using optimization-based data-driven design approaches. With careful consideration, advanced computational methods were used to find concepts that may manage and lessen possible consequences in an efficient manner, increasing the urban landscape’s overall flexibility. Achieving the best possible solutions, which consider issues like feasibility, sustainability, durability, adaptability, and user comfort, requires the application of computational studies such as microclimatic, rainfall, energy performance, and fluid simulations. Consequently, promising advances in water retention and trajectory control features are shown by evaluations that concentrate on wind dynamics and energy considerations. One such example is GEN_8, the most optimal typology produced by additive massing approaches. In addition to showing less water retention than usual building typologies, GEN_8 optimizes energy performance to improve user experience overall. Accordingly, the computationally created geometry GEN_8’s shaded areas and facades effectively account for between 191.4 and 957 kWh/m2 of yearly solar radiation. In contrast, average building typologies show higher amounts of annual solar radiation, with a minimum of 574.32 kWh/m2 and a maximum of 1148.65 kWh/m2. This paper’s comprehensive approach not only addresses worldwide issues but also highlights how computational design techniques may be used to construct, assess, and validate workable solutions for flood-prone locations within a flexible framework that has been painstakingly designed. As a result, the research also highlights the significance of technological advancements and computational tools in assessing, producing, and validating workable solutions for flood-prone locations by carefully curating a flexible framework that ensures efficiency, comfort, and design optimization.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3