Optimal Sustainable Manufacturing for Product Family Architecture in Intelligent Manufacturing: A Hierarchical Joint Optimization Approach

Author:

Ma Yujie1,Chen Xueer2,Ma Shuang3ORCID

Affiliation:

1. Department of Industrial Engineering, Tsinghua University, Beijing 100084, China

2. WOMOW S&T Co., Ltd., Tianjin 300170, China

3. Donlinks School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China

Abstract

As consumers and governments prioritize cost-effectiveness and ecological sustainability, the limitations of traditional manufacturing paradigms become apparent in the context of constrained resources. The adverse effects of these paradigms on the environment and society hinder the achievement of a sustainable product life cycle. Intelligent manufacturing processes offer a solution by efficiently gathering meaningful data, such as usage and product recycling information, from previous product generations to enhance product design and subsequent sustainable manufacturing processes (SMPs). Modular product family architecture (PFA) design holds promise in promoting product sustainability and addressing diverse consumer needs. PFA design and SMPs are inherently interconnected within intelligent manufacturing frameworks. This paper aims to integrate the decision-making processes underlying PFA with SMPs. We model integrated PFA and SMP decisions as a Stackelberg game, which involves hierarchical joint optimization (HJO) for assessing product modularity and sustainable manufacturing fulfillment. We develop a bilevel 0–1 integer nonlinear programming model to represent the HJO decision-making process and propose a nested genetic algorithm (NGA) to solve the HJO problem. A case study with a laptop is conducted to validate the feasibility and potential of the proposed HJO model for joint optimization problems in PFA design and SMPs.

Funder

National Natural Science Foundation of China

Humanities and Social Sciences Youth Foundation of Ministry of Education of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3