Indoor Air Quality and Ventilation Energy in University Classrooms: Simplified Model to Predict Trade-Offs and Synergies

Author:

Shoukry Farah1ORCID,Raafat Rana2ORCID,Tarabieh Khaled2ORCID,Goubran Sherif2ORCID

Affiliation:

1. Environmental Engineering Program, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt

2. Department of Architecture, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt

Abstract

Students and educators spend significant time in learning spaces on university campuses. Energy efficiency has become a concern among facility managers, given the need to maintain acceptable indoor air quality (IAQ) levels during and after the COVID-19 pandemic. This paper investigates the relationship between control and extraneous variables in a university classroom’s total mechanical ventilation (kWh). The model is built using Grasshopper software on Rhino Version 7. Our methodology encompasses (1) an extensive review of recent trends for studying IAQ and energy, (2) selecting parameters for simulation, (3) model configuration on Grasshopper, and finally, (4) a formulation of a pertinent equation to consolidate the relationship between the studied factors and the total mechanical ventilation energy (kWh). Central to this study are two key research questions: (1) What correlations exist between various parameters related to occupancy and IAQ in educational spaces? And (2) how can we optimize energy efficiency in university classrooms? The main contribution of this research is a generated equation representing the annual mechanical ventilation energy consumption based on selected parameters of classroom height, area, occupancy, window location, and ventilation rate of HVAC systems. We find that occupancy and class volume are the two most influential factors directly affecting mechanical ventilation energy consumption. The equation serves as a valuable estimation tool for facility managers, designers, and campus operations to investigate how fluctuations in occupancy can influence ventilation energy consumption in the physical attributes of a university classroom. This enables proactive decision-making, optimizing energy efficiency and resource allocation in real-time to promote sustainable and cost-effective campus operations.

Funder

American University in Cairo

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3