Lateral Convergence Deformation Prediction of Subway Shield Tunnel Based on Kalman Model

Author:

Bao Yan1,Zheng Yexin1,Tang Chao2,Meng Xiaolin3ORCID,Sun Zhe1,Zhang Dongliang1,Wang Li1

Affiliation:

1. The Key Laboratory of Urban Security and Disaster Engineering of China Ministry of Education, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China

2. Beijing Urban Construction Exploration & Surveying Design Research Institute Co., Ltd., Beijing 100101, China

3. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China

Abstract

In order to optimize the structure of a subway shield tunnel, minimize injuries, and avoid potential safety hazards, the lateral convergence deformation of subway shield tunnels should be predicted. In terms of accuracy and stability, existing prediction models perform poorly in obtaining the lateral convergence deformation value of a non-stationary small-sized sample of a subway shield tunnel. In this paper, a lateral convergence model of a subway shield tunnel based on the Kalman algorithm is constructed based on Kalman filtering theory. The model is efficient, adaptive, and robust and can accurately predict the lateral convergence deformation of a subway shield tunnel. Taking the horizontal diameter of a 200-ring shield segment in the interval section of a subway tunnel as an example, we have proved that the residuals of the Kalman prediction model are small, the residual distribution conforms to the normal distribution, and the prediction effect is great. The model is suitable for the prediction of more than five periods of data, and the prediction accuracy of the model improves with an increase in the number of data periods. In addition, in this paper, we compare the Kalman model with the GM(1,1) model and the GM–Markov model, and the RMSE, NRMSE, MAPE, and R2 are used as evaluation indices. The results show that the Kalman model has a higher prediction accuracy and is more suitable for predicting the lateral convergence deformation of a subway shield tunnel.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3