Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the National Oceanic and Atmospheric Administration-20 (NOAA-20) and the Suomi National Polar-orbiting Partnership Program (S-NPP) satellites were launched in late 2017 and 2011, respectively. This paper presents a recent update in the VIIRS thermal emissive bands (TEB) on-orbit calibration algorithm and inter-compares long-term instrument and TEB sensor data records (SDR) performances of the two VIIRS, to support user communities. The VIIRS TEB calibration algorithm was improved to mitigate calibration biases during the blackbody warm-up/cool-down (WUCD) events. Four WUCD bias correction methods were implemented in the NOAA operational processing in 2019: (1) the Nominal-F method, (2) the WUCD-C method, (3) the Ltrace method, and (4) the Ltrace-2 method. Our evaluation results indicate that the on-orbit performances of the two VIIRS instruments have been generally stable and comparable with each other, except that NOAA-20 VIIRS blackbody and instrument temperatures are lower than those of the S-NPP VIIRS. The degradations in the S-NPP TEB detector responsivities remain small after 9 years on-orbit. NOAA-20 detector responsivities have been generally stable after the longwave infrared degradation during its early mission was resolved by the mid-mission outgassing. NOAA-20 and S-NPP VIIRS TEB SDRs agree with co-located Cross-track Infrared Sounder observations, with daily averaged biases within 0.1 K at nadir. After the implementation of operational WUCD bias correction, residual TEB WUCD biases are similar for NOAA-20 and S-NPP, with daily averaged biases ~0.01 K in all bands.
Funder
National Oceanic and Atmospheric Administration
Subject
General Earth and Planetary Sciences
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献