Framework for Accounting Reference Levels for REDD+ in Tropical Forests: Case Study from Xishuangbanna, China

Author:

Liu Guifang,Feng Yafei,Xia Menglin,Lu Heli,Guan Ruimin,Harada Kazuhiro,Zhang ChuanrongORCID

Abstract

The United Nations’ expanded program for Reducing Emissions from Deforestation and Forest Degradation (REDD+) aims to mobilize capital from developed countries in order to reduce emissions from these sources while enhancing the removal of greenhouse gases (GHGs) by forests. To achieve this goal, an agreement between the Parties on reference levels (RLs) is critical. RLs have profound implications for the effectiveness of the program, its cost efficiency, and the distribution of REDD+ financing among countries. In this paper, we introduce a methodological framework for setting RLs for REDD+ applications in tropical forests in Xishuangbanna, China, by coupling the Good Practice Guidance on Land Use, Land Use Change, and Forestry of the Intergovernmental Panel on Climate Change and land use scenario modeling. We used two methods to verify the accuracy for the reliability of land classification. Firstly the accuracy reached 84.43%, 85.35%, and 82.68% in 1990, 2000, and 2010, respectively, based on high spatial resolution image by building a hybrid matrix. Then especially, the 2010 Globeland30 data was used as the standard to verify the forest land accuracy and the extraction accuracy reached 86.92% and 83.66% for area and location, respectively. Based on the historical land use maps, we identified that rubber plantations are the main contributor to forest loss in the region. Furthermore, in the business-as-usual scenario for the RLs, Xishuangbanna will lose 158,535 ha (158,535 × 104 m2) of forest area in next 20 years, resulting in approximately 0.23 million t (0.23 × 109 kg) CO2e emissions per year. Our framework can potentially increase the effectiveness of the REDD+ program in Xishuangbanna by accounting for a wider range of forest-controlled GHGs.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3