Accuracy Improvements to Pixel-Based and Object-Based LULC Classification with Auxiliary Datasets from Google Earth Engine

Author:

Qu Le’anORCID,Chen ZhenjieORCID,Li Manchun,Zhi Junjun,Wang Huiming

Abstract

The monitoring and assessment of land use/land cover (LULC) change over large areas are significantly important in numerous research areas, such as natural resource protection, sustainable development, and climate change. However, accurately extracting LULC only using the spectral features of satellite images is difficult owing to landscape heterogeneities over large areas. To improve the accuracy of LULC classification, numerous studies have introduced other auxiliary features to the classification model. The Google Earth Engine (GEE) not only provides powerful computing capabilities, but also provides a large amount of remote sensing data and various auxiliary datasets. However, the different effects of various auxiliary datasets in the GEE on the improvement of the LULC classification accuracy need to be elucidated along with methods that can optimize combinations of auxiliary datasets for pixel- and object-based classification. Herein, we comprehensively analyze the performance of different auxiliary features in improving the accuracy of pixel- and object-based LULC classification models with medium resolution. We select the Yangtze River Delta in China as the study area and Landsat-8 OLI data as the main dataset. Six types of features, including spectral features, remote sensing multi-indices, topographic features, soil features, distance to the water source, and phenological features, are derived from auxiliary open-source datasets in GEE. We then examine the effect of auxiliary datasets on the improvement of the accuracy of seven pixels-based and seven object-based random forest classification models. The results show that regardless of the types of auxiliary features, the overall accuracy of the classification can be improved. The results further show that the object-based classification achieves higher overall accuracy compared to that obtained by the pixel-based classification. The best overall accuracy from the pixel-based (object-based) classification model is 94.20% (96.01%). The topographic features play the most important role in improving the overall accuracy of classification in the pixel- and object-based models comprising all features. Although a higher accuracy is achieved when the object-based method is used with only spectral data, small objects on the ground cannot be monitored. However, combined with many types of auxiliary features, the object-based method can identify small objects while also achieving greater accuracy. Thus, when applying object-based classification models to mid-resolution remote sensing images, different types of auxiliary features are required. Our research results improve the accuracy of LULC classification in the Yangtze River Delta and further provide a benchmark for other regions with large landscape heterogeneity.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Research Project of Higher Education in Anhui Provence

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference69 articles.

1. Dependence of Error Components in Satellite-Based Precipitation Products on Topography, LULC and Climatic Features;Dhanya,2018

2. Analysis of the Combined and Single Effects of LULC and Climate Change on the Streamflow of the Upper Blue Nile River Basin (UBNRB): Using Statistical Trend Tests, Remote Sensing Landcover Maps and the SWAT Model;Disse;Hydrol. Earth Syst. Sci. Discuss.,2018

3. Microenvironmental heterogeneity caused by anthropogenic LULC foster lower plant assemblages in the riparian habitats of lentic systems in tropical floodplains

4. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine

5. A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3