Volumetric Analysis of the Landslide in Abe Barek, Afghanistan Based on Nonlinear Mapping of Stereo Satellite Imagery-Derived DEMs

Author:

Atefi Mujeeb RahmanORCID,Miura HiroyukiORCID

Abstract

On 2 May 2014, a large-scale landslide in Abe Barek, Badakhshan, Afghanistan, produced extensive damage to the buildings and killed hundreds of people. Evaluations of the extent and the volume of the displaced materials are vital for post-disaster management activities. In this study, we present the applicability of a nonlinear geometric correction technique for decreasing the undesired registration errors between pre- and post-event digital elevation models (DEMs) generated from high-resolution stereo pair satellite imagery, identifying landslide affected areas, and quantifying the landslide volume from DEMs of difference (DoD) analysis. The nonlinear mapping method consists of shifting vector generation in subareas of the DEMs, consensus operations, and interpolation of the shifting vectors. The quality assessment confirmed that the method outperformed the simple DoD technique by eliminating a large-scale of geometric errors in an unaffected area. We estimated the volume of the landslide as 1.05 × 106 m3 from the DoD corrected by the nonlinear method, and discussed the relationship between the area and volume compared to those of the previous studies.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference52 articles.

1. Socioeconomic and Environmental Impacts of Landslides in the Western Hemisphere;Schuster,2001

2. Landslide risk assessment and management: an overview

3. The analysis of global landslide risk through the creation of a database of worldwide landslide fatalities;Petley,2005

4. The human cost of global warming: Deadly landslides and their triggers (1995–2014)

5. Afghanistan Natural Disaster Incident Reports [2012 through 2020]https://data.humdata.org/dataset/afghanistan-natural-disaster-incidents-in-2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3