Modelling Accessibility to Urban Green Areas Using Open Earth Observations Data: A Novel Approach to Support the Urban SDG in Four European Cities

Author:

Giuliani GregoryORCID,Petri Ekkehard,Interwies Eduard,Vysna Veronika,Guigoz Yaniss,Ray NicolasORCID,Dickie Ian

Abstract

Cities are recognised as key enablers for the world’s sustainable future. Urban sprawl and inefficient use of land are important issues significantly impacting the provision and use of open green spaces. The United Nations Sustainable Development Goal (SDG) indicator 11.7.1 aims at globally monitoring the amount of land that is dedicated by cities for public space. In Europe, the indicator “Share of urban population without green urban areas in their neighbourhood” is supposed to correspond to the SDG11.7.1 but is currently on-hold due to methodological issues and lack of data. Moreover, to efficiently assess public space conditions, timely and spatially disaggregated information is essential but not yet widely adopted by urban practitioners. Hereafter, we use a combination of satellite and crowdsourced Earth Observations (EO) to model physical accessibility to urban green spaces in four European cities. Findings suggest that it is technically feasible to derive information on the share of urban population without green urban areas in their neighbourhood. Results demonstrate that the proposed methodology represents a consistent, valid, reliable, low-cost, timely and continuous source of information for sustainable urban development. Open and free EO data can be a good complement to enhance official and traditional statistics on urban areas facilitating EU reporting against the SDG indicator for better comparison between EU countries.

Funder

Eurostat

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference85 articles.

1. Principles and Applications of the Global Human Settlement Layer as Baseline for the Land Use Efficiency Indicator—SDG 11.3.1

2. Measuring the accessibility of urban green areas;Pafi,2016

3. Report of the Tenth Session of the World Urban Forum,2020

4. The Future of Cities: Opportunities, Challenges and the Way Forward;Valentina,2019

5. Urban land use intensity assessment: The potential of spatio-temporal spectral traits with remote sensing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3