Potential Global Distribution of the Habitat of Endangered Gentiana rhodantha Franch: Predictions Based on MaxEnt Ecological Niche Modeling

Author:

Zhang Huihui,Sun Xiao,Zhang Guoshuai,Zhang Xinke,Miao Yujing,Zhang Min,Feng Zhan,Zeng RuiORCID,Pei Jin,Huang Linfang

Abstract

Continued global climate and environmental changes have led to habitat narrowing or migration of medicinal plants. Gentiana rhodantha Franch. ex Hemsl. is a medicinal plant for ethnic minorities in China, and it has a remarkable curative effect in the treatment of lung-heat cough. However, its habitat is gradually decreasing, and the species has been listed as an endangered ethnic medicine due to excessive harvesting. Here, based on CMIP6 bioclimatic data and 117 species occurrence records, the maximum entropy model (MaxEnt), combined with ArcGIS technology, was applied to predict the potentially suitable habitats for G. rhodantha under different climate scenarios. The results showed that the most critical bioclimatic variables affecting G. rhodantha are the precipitation of the warmest quarter (Bio18) and the mean temperature of the coldest quarter (Bio11). The highly suitable habitats of G. rhodantha are mainly concentrated in Belt and Road (“B&R”) countries, including China, Bhutan, and Vietnam. However, under different climate change scenarios, the fragmentation extent of suitable habitats in China will generally increase, the suitable area will show a decreasing trend as a whole, the distribution center will shift to the northeast, and the distance will increase with time. Notably, the shrinkage of the high suitability area was the most obvious for the 2081–2100 SSP585 scenario, with a total of 358,385.2 km2. These findings contribute to the understanding of the geo-ecological characteristics of this species, and provide guidelines for the conservation, management, monitoring, and cultivation of G. rhodantha.

Funder

National Natural Science Foundation of China

Open Fund of State Key Laboratory of Southwestern Chinese Medicine Resources

Beijing Natural Scientific Foundation

CAMS Innovation Fund for Medical Sciences

National Science & Technology Fundamental Resources Investigation Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3