Enhanced Ischemic Stroke Lesion Segmentation in MRI Using Attention U-Net with Generalized Dice Focal Loss

Author:

Garcia-Salgado Beatriz P.1ORCID,Almaraz-Damian Jose A.2ORCID,Cervantes-Chavarria Oscar1,Ponomaryov Volodymyr1ORCID,Reyes-Reyes Rogelio1ORCID,Cruz-Ramos Clara1ORCID,Sadovnychiy Sergiy3ORCID

Affiliation:

1. Instituto Politécnico Nacional, ESIME Culhuacán, Santa Ana 1000, Mexico City 04440, Mexico

2. Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad de Transferencia Tecnológica Tepic, Tepic 63173, Mexico

3. Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Mexico City 7730, Mexico

Abstract

Ischemic stroke lesion segmentation in MRI images represents significant challenges, particularly due to class imbalance between foreground and background pixels. Several approaches have been developed to achieve higher F1-Scores in stroke lesion segmentation under this challenge. These strategies include convolutional neural networks (CNN) and models that represent a large number of parameters, which can only be trained on specialized computational architectures that are explicitly oriented to data processing. This paper proposes a lightweight model based on the U-Net architecture that handles an attention module and the Generalized Dice Focal loss function to enhance the segmentation accuracy in the class imbalance environment, characteristic of stroke lesions in MRI images. This study also analyzes the segmentation performance according to the pixel size of stroke lesions, giving insights into the loss function behavior using the public ISLES 2015 and ISLES 2022 MRI datasets. The proposed model can effectively segment small stroke lesions with F1-Scores over 0.7, particularly in FLAIR, DWI, and T2 sequences. Furthermore, the model shows reasonable convergence with their 7.9 million parameters at 200 epochs, making it suitable for practical implementation on mid and high-end general-purpose graphic processing units.

Publisher

MDPI AG

Reference39 articles.

1. Global Burden of Stroke;Feigin;Circ. Res.,2017

2. World Health Organization (2024, August 11). Stroke, Cerebrovascular Accident. Available online: https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html.

3. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment;Adams;Stroke,1993

4. Diagnosis and management of acute ischaemic stroke;Hurford;Pract. Neurol.,2020

5. Time Is Brain—Quantified;Saver;Stroke,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3