Plant-Leaf Recognition Based on Sample Standardization and Transfer Learning

Author:

Li Guoxin1,Zhang Ruolei1,Qi Dawei1,Ni Haiming1ORCID

Affiliation:

1. College of Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China

Abstract

In recent years, deep-learning methods have significantly improved the classification results in the field of plant-leaf recognition. However, limited by the model input, the original image needs to be compressed to a certain size before it can be input into the convolutional neural network. This results in great changes in the shape and texture information of some samples, thus affecting the classification accuracy of the model to a certain extent. Therefore, a minimum enclosing quadrate (MEQ) method is proposed to standardize the sample datasets. First, the minimum enclosing rectangle (MER) of the leaf is obtained in the original image, and the target area is clipped. Then, the minimum enclosing quadrate of the leaf is obtained by extending the short side of the rectangle. Finally, the sample is compressed to fit the input requirements of the model. In addition, in order to further improve the classification accuracy of plant-leaf recognition, an EC-ResNet50 model based on transfer-learning strategy is proposed and further combined with the MEQ method. The Swedish leaf, Flavia leaf, and MEW2012 leaf datasets are used to test the performance of the proposed methods, respectively. The experimental results show that using the MEQ method to standardize datasets can significantly improve the classification accuracy of neural networks. The Grad-CAM visual analysis reveals that the convolutional neural network exhibits a higher degree of attention towards the leaf surface features and utilizes more comprehensive feature regions during recognition of the leaf samples processed by MEQ method. In addition, the proposed MEQ + EC-ResNet50 method also achieved the best classification results among all the compared methods. This experiment provides a widely applicable sample standardization method for leaf recognition research, which can avoid the problem of sample deformation caused by compression processing and reduce the interference of redundant information in the image to the classification results to a certain degree.

Funder

Fundamental Research Funds for the Central Universities

Northeast Forestry University

Project of National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3