Whispered Speech Recognition Based on Audio Data Augmentation and Inverse Filtering

Author:

Galić Jovan1ORCID,Marković Branko2ORCID,Grozdić Đorđe34,Popović Branislav5ORCID,Šajić Slavko1

Affiliation:

1. Department of Telecommunications, Faculty of Electrical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina

2. Department of Computer and Software Engineering, Faculty of Technical Sciences, University of Kragujevac, 32000 Čačak, Serbia

3. Grid Dynamics, 11000 Belgrade, Serbia

4. School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia

5. Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

Abstract

Modern Automatic Speech Recognition (ASR) systems are primarily designed to recognize normal speech. Due to a considerable acoustic mismatch between normal speech and whisper, ASR systems suffer from a significant loss of performance in whisper recognition. Creating large databases of whispered speech is expensive and time-consuming, so research studies explore the synthetic generation using pre-existing normal or whispered speech databases. The impact of standard audio data augmentation techniques on the accuracy of isolated-word recognizers based on Hidden Markov Models (HMM) and Convolutional Neural Networks (CNN) is examined in this research study. Furthermore, the study explores the potential of inverse filtering as an augmentation strategy for producing pseudo-whisper speech. The Whi-Spe speech database, containing recordings in normal and whisper phonation, is utilized for data augmentation, while the internally recorded speech database, developed specifically for this study, is employed for testing purposes. Experimental results demonstrate statistically significant improvement in performance when employing data augmentation strategies and inverse filtering.

Funder

Science Fund of the Republic of Serbia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3