Seismic Identification and Characterization of Deep Strike-Slip Faults in the Tarim Craton Basin

Author:

Tian Fei123ORCID,Zheng Wenhao1234ORCID,Zhao Aosai123ORCID,Liu Jingyue123,Liu Yunchen123,Zhou Hui5,Cao Wenjing123

Affiliation:

1. CAS Engineering Laboratory for Deep Resources Equipment and Technology, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. Innovation Academy for Earth Science, CAS, Beijing 100029, China

3. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

4. Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, UK

5. Research Institute of Petroleum Exploration and Development, Petrochina, Beijing 100083, China

Abstract

Through hydrocarbon explorations, deep carbonate reservoirs within a craton were determined to be influenced by deep strike-slip faults, which exhibit small displacements and are challenging to identify. Previous research has established a correlation between seismic attributes and deep geological information, wherein large-scale faults can cause abrupt waveform discontinuities. However, due to the inherent limitations of seismic datasets, such as low signal-to-noise ratios and resolutions, accurately characterizing complex strike-slip faults remains difficult, resulting in increased uncertainties in fault characterization and reservoir prediction. In this study, we integrate advanced techniques such as principal component analysis and structure-oriented filtering with a fault-centric imaging approach to refine the resolution of seismic data from the Tarim craton. Our detailed evaluation encompassed 12 distinct seismic attributes, culminating in the creation of a sophisticated model for identifying strike-slip faults. This model incorporates select seismic attributes and leverages fusion algorithms like K-means, ellipsoid growth, and wavelet transformations. Through the technical approach introduced in this study, we have achieved multi-scale characterization of complex strike-slip faults with throws of less than 10 m. This workflow has the potential to be extended to other complex reservoirs governed by strike-slip faults in cratonic basins, thus offering valuable insights for hydrocarbon exploration and reservoir characterization in similar geological settings.

Funder

Youth Innovation Promotion Association Foundation of the Chinese Academy of Sciences

Chinese National key research and development program

Strategic Priority Research Program of the Chinese Academy of Sciences

Chinese National Natural Science Foundation

China National Petroleum Corporation (CNPC) Scientific research and technology development project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3