Advancing Nighttime Object Detection through Image Enhancement and Domain Adaptation

Author:

Zhang Chenyuan1,Lee Deokwoo1ORCID

Affiliation:

1. Department of Computer Engineering, Keimyung University, Daegu 42601, Republic of Korea

Abstract

Due to the lack of annotations for nighttime low-light images, object detection in low-light images has always been a challenging problem. Achieving high-precision results at night is also an issue. Additionally, we aim to use a single nighttime dataset to complete the knowledge distillation task while improving the detection accuracy of object detection models under nighttime low-light conditions and reducing the computational cost of the model, especially for small targets and objects contaminated by special nighttime lighting. This paper proposes a Nighttime Unsupervised Domain Adaptation Network (NUDN) based on knowledge distillation to address these issues. To improve the detection accuracy of nighttime images, high-confidence bounding box predictions from the teacher and region proposals from the student are first fused, allowing the teacher to perform better in subsequent training, thus generating a combination of high-confidence and low-confidence pseudo-labels. This combination of feature information is used to guide model training, enabling the model to extract feature information similar to that of source images in nighttime low-light images. Nighttime images and pseudo-labels undergo random size transformations before being used as input for the student, enhancing the model’s generalization across different scales. To address the scarcity of nighttime datasets, we propose a nighttime-specific augmentation pipeline called LightImg. This pipeline enhances nighttime features, transforming them into daytime features and reducing issues such as backlighting, uneven illumination, and dim nighttime light, enabling cross-domain research using existing nighttime datasets. Our experimental results show that NUDN can significantly improve nighttime low-light object detection accuracy on the SHIFT and ExDark datasets. We conduct extensive experiments and ablation studies to demonstrate the effectiveness and efficiency of our work.

Funder

Keimyung University

Publisher

MDPI AG

Reference54 articles.

1. Knowledge distillation-based nighttime unupervised cross-domain object detection network;Chen;Sensors,2020

2. CycleGAN-based domain adaptation for nighttime object detection;Zhu;IEEE Trans. Image Process.,2021

3. Hierarchical feature alignment for cross-domain object detection;Wang;Pattern Recognit.,2019

4. Domain adaptation for nighttime object detection using diversified samples;Jin;IEEE Trans. Neural Netw. Learn. Syst.,2021

5. Dynamic convolutional neural network for nighttime object detection;Li;IEEE Access,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3