Introducing Cement-Enhanced Clay-Sand Columns under Footings Placed on Expansive Soils

Author:

Shaker Abdullah A.1ORCID,Dafalla Muawia1

Affiliation:

1. Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Abstract

The risk posed by expansive soils can be lessened by placing foundations at a more deep level below the surface. Structures are able to withstand uplift forces because overburden pressure partially suppresses swelling pressure. In order to transfer the forces to a sufficiently deep depth, this study suggests introducing shafts of a low-expansion overburden material. Soil improved with cement is chosen for this purpose. This study suggests using sand with added excavated natural clay and cement. The expansive clay is added to sand in ratios of 10, 20, 30, 40 and 60%. The clay–sand mixture is then enhanced by cement of 1, 2, 4 and 8% by the weight of the mixture under four curing periods of 1, 7, 28, and 90 days. This material is recommended for use under lean concrete to transfer the loads to lower levels below the foundation depth. The thickness of this material depends on the stresses exerted, the type and the properties of the subsurface soils. The cement-enhanced clay–sand shaft’s properties are examined in this work with regard to the swelling potential, compressibility, and the unconfined compressive strength for different clay contents and curing conditions. Stiff shafts were formed and found to support stresses from 600 to 3500 kPa at cement additions in the range of 1% to 8%. Clay content above 30% is found to be not suitable for Al-Qatif clay due to the compressibility and low strength of the mixture. When two percent or more of cement is added, the swelling potential is significantly reduced. This is reliant on the pozzolanic interactions of soils and cement as well as the clay mineralogy. Determining how cement affects clay–sand combinations in regions with expansive soils would facilitate the introduction of a novel, inexpensive technology to support loads applied by the superstructure.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Reference47 articles.

1. Expansive soils;Jones;ICE Manual of Geotechnical Engineering. Volume 1, Geotechnical Engineering Principles, Problematic Soils and Site Investigation,2012

2. Consideration on compression properties of m clay based on the pore size distribution measurement;Miura;Doboku Gakkai Ronbunshu,1999

3. Engineering behavior of cement stabilized clay at high water content;Miura;Soils Found.,2001

4. Compressibility of cement-admixed clays at high water content;Horpibulsuk;Geotechnique,2004

5. Strength development in cement admixed Bangkok clay: Laboratory and field investigations;Horpibulsk;Soils Found.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3