Extracellular Enzyme Activity and Stoichiometry Reveal Nutrient Dynamics during Microbially-Mediated Plant Residue Transformation

Author:

Liu Chunhui,Ma Jingyi,Qu Tingting,Xue Zhijing,Li XiaoyunORCID,Chen QinORCID,Wang Ning,Zhou Zhengchao,An Shaoshan

Abstract

Extracellular enzymes are the major mediators of plant residue and organic matter decomposition in soil, frequently associated with microbial metabolic processes and the biochemical cycling of nutrients in soil ecosystems. However, the dynamic trends and driving factors of extracellular enzymes and their stoichiometry during plant residue transformation remain to be further studied. Here, we investigated the dynamics of extracellular enzymes and enzymatic stoichiometry in the “litter-soil” transformation interface soil (TIS) layer, an essential occurrence layer for microbially-mediated C transformation. The results indicated an unbalanced relationship between substrate resource supply and microbial metabolic demand. Microbial metabolism was limited by C (C/N-acquiring enzymes > 1) and P (N/P-acquiring enzymes < 1) throughout the observed stages of plant residue transformation. The initially higher extracellular enzyme activity reflected the availability of the active components (dissolved carbon (DC), nitrogen (DN), microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP)) in the substrate and the higher intensity of microbial metabolism. With the transformation of plant residues, the active fraction ceased to be the predominant microbial C source, forcing the secretion of C-acquiring enzymes and N-acquiring enzymes to obtain C sources and N nutrients from refractory substrates. Moreover, C/N-acquiring enzymes decreased, while C/P-acquiring enzymes and N/P-acquiring enzymes subsequently increased, which suggested that the microbial demand for N gradually increased and for P relatively decreased. Soil microorganisms can be forced into dormancy or intracellular mineralization due to the lack of substrate resources, so microbial biomass and extracellular enzyme activities decreased significantly compared to initial values. In summary, the results indicated that soil nutrients indirectly contribute to extracellular enzymes and their stoichiometry by affecting microbial activities. Furthermore, extracellular enzymes and their stoichiometry were more sensitive to the response of soil microbial biomass carbon.

Funder

National Natural Science Foundation of China

Key R&D Plan of Shaanxi Province in China

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3