Soil Erosion in Extensive versus Intensive Land Uses in Areas Sensitive to Desertification: A Case Study in Beira Baixa, Portugal

Author:

Nunes Adélia N.12ORCID,Gonçalves João Pedro1ORCID,Figueiredo Albano12ORCID

Affiliation:

1. Department of Geography and Tourism, University of Coimbra, 3004-530 Coimbra, Portugal

2. CEGOT—Centre of Studies of Geography and Spatial Planning, University of Coimbra, 3004-530 Coimbra, Portugal

Abstract

The occurrence of long periods of drought followed by extreme episodes of rainfall and ineffective soil conservation practices are the main causes of soil erosion in the Mediterranean region. The objective of this paper is to assess and compare the hydrological and erosional responses related to land use changes in agricultural landscapes that are sensitive to erosion and that are a result of the significant replacement of traditional land uses. Such changes are characterized by the replacement of extensive olive groves associated with pastureland by intensive almond production, where deep plowing and heavy machinery are required. In each sampling site, runoff initiation, runoff coefficient, and soil loss were evaluated under simulated rainfall (55 mm h−1), at plot scale (0.25 m2), at the end of the hot and dry summer period. Slope gradient, soil texture, bulk density, soil organic matter content, soil water content, and plant cover were also determined. The results showed the impact of recently planted intensive almond orchards (IAOs) on accelerating soil erosion risk compared with the extensive traditional olive groves (EOGs), although runoff initiation and discharge are very similar between the studied land uses. The mean values recorded for soil loss and sediment concentration were 118 g m−2 h−1 and 12 g m−2 h−1 and 3.1 g L−1 and 0.7 g L−1, respectively, for IAOs and EOGs. Our results also demonstrated that maintaining a vegetation cover is a determining factor for the prevention and control of soil erosion, especially in IAOs, where retaining high percentages of natural plant-residue mulch layers (>70%) reduced soil loss by about 70% in this study.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3