Influence of Irrigation on Vertical Migration of Soil Organic Carbon in Arid Area of Inland River

Author:

Zhang Wenhao123,Zhu Guofeng123,Wan Qiaozhuo123,Lu Siyu123,Zhao Ling123,Qiu Dongdong123,Lin Xinrui123

Affiliation:

1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China

2. Shiyang River Ecological Environment Observation Station, Northwest Normal University, Lanzhou 730070, China

3. Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou 730070, China

Abstract

Soil organic carbon is very important to increase crop yield. Understanding the composition changes and migration characteristics of SOC under different irrigation conditions in arid oasis areas is of great significance for the sustainable development of agro-ecosystem and the estimation of carbon balance of farmland ecosystem in arid areas. In this paper, classical statistics and geostatistics were used to study the leaching characteristics and migration laws of soil organic carbon under different irrigation conditions in Minqin Oasis, and the leaching amount and loss process and mechanism of SOC under different irrigation conditions were quantified. The research results showed that: (1) Irrigation increased the average 0–100 cm SOC content. After irrigation, SOC content decreased first and then increased with the increase in soil depth, with the maximum value of 8.56 g/kg and the minimum value of 1.82 g/kg. Compared with that before irrigation, SOC content in 0–30 cm surface layer was in leaching state, SOC content in 30–70 cm surface layer was accumulated, and SOC content in 70–100 cm surface layer had no obvious change. (2) Water was an important factor affecting soil carbon. The greater the irrigation amount, the higher the carbon leaching rate and the greater the migration amount. The SOC content in 0–30 cm soil layer was most significantly affected by irrigation, and the migration amount of SOC gradually decreased with the increase in soil depth. The maximum leaching rate of SOC was 36.8%, the minimum leaching rate was 13.5%, and its average leaching rate was 23.4%. (3) Due to the influence of soil infiltration rate under water, SOC content in different irrigation periods showed that the greatest SOC occurred in the 0–70 cm layer, and SOC content in soil was basically the same as that in non-irrigated areas on the fifth day after irrigation. (4) Precipitation, plastic film mulching, soil physical and chemical properties and other environmental factors were important factors affecting the migration and change in SOC content.

Funder

National Natural Science Foundation of China

Key Natural Science Foundation of Gansu Province

Key Research and Development Program of Gansu Province

Cultivation Program of Major Key Projects of Northwest Normal University

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3