Abstract
The droughts that hit North and North Western Europe in 2018 and 2019 served as a wake-up call that temperate regions are also affected by these kinds of slow progressing or creeping disasters. Long-term drivers, such as land-use changes, may have exacerbated the impacts of these meteorological droughts. These changes, which are spread over a long time span, may even be difficult to perceive for an individual, but make a big difference in how these rare weather events impact a region. In this paper, we introduce three long-term drivers: forest fires in Europe, global urbanisation, and global deforestation. We attempt to provide a first assessment of their trends, mainly using statistics derived from satellite imagery published in recent literature. Due to the complexity of drought impacts, and the scarcity of quantitative impact data, the relationship between drought impact and these three processes for land use change is difficult to quantify; however, hence we present a survey of the recent trends in these land use change processes and the possible mechanics by which they affect drought impacts. Based on this survey we can conclude that the extent and the number of wildfires have increased markedly in Europe since 2010. Deforestation is still occurring in the tropics, with a loss of 12% in the last 30 years but has halted in the northern regions. Urbanisation has more than doubled in the same time span in the tropics and subtropics, mostly at the expense of forests, while in Europe urbanisation took place mainly in the northern part of the continent. We can conclude that none of these implicit drought drivers followed a favourable trend in the last 30 years. With consistent and worldwide monitoring, for example, by using satellite imagery, we can regularly inform the scientific community on the trends in these drought impact affecting processes, thus helping decision makers to understand how far we have progressed in making the world resilient to drought impacts.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献