Shared Bicycle Distribution Connected to Subway Line Considering Citizens’ Morning Peak Social Characteristics for Urban Low-Carbon Development

Author:

Zhang ShuoORCID,Chen LiORCID,Li Yingzi

Abstract

The transport sector has produced numerous carbon emissions in China, and it is important to promote low carbon commuting. As an emerging mode of urban low-carbon transportation in China, shared bicycles have been used by more and more citizens on a daily basis, with advantages of green and low-carbon emissions to environment, flexibility for short trips, and convenience for covering the distance between the normal low-carbon transportation and destinations. However, the imbalanced distribution of shared bicycles along subway lines, especially during the morning peak hours, has directly restricted their performance in urban traffic. In this paper, an integer linear program model (ILPM) is proposed to obtain an optimal low-carbon distribution plan of shared bicycles connecting with the subway line (SBCSL) during the morning peak hours. First, an objective function is built to improve the carbon emission reduction of SBCSL. Second, constraint functions are extracted considering the quantity of bicycles to be distributed to the subway line as well as the distribution limits of each subway station. At last, a case study is conducted on the distribution of shared bicycles in Beijing Subway Line 13 of China during the morning peak hours. The results show that the ILPM is of significance to provide optimal distribution scheme of shared bicycles in subway line with different station types including office-oriented, residential-oriented, and hybrid-oriented stations.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3