Development of Leakage Detection Model and Its Application for Water Distribution Networks Using RNN-LSTM

Author:

Lee Chan-WookORCID,Yoo Do-Guen

Abstract

With the advent of the 4th Industrial Revolution, advanced measurement infrastructure and utilization technologies are being noticeably introduced into the water supply system to store and utilize measurement data. From this perspective, the leak detection technology in water supply networks is becoming increasingly vital to sustainable water resource management and the clean water supply worldwide. In particular, leakage detection of buried pipelines is rated as a very challenging research topic given the current level of technology. However, leakage in buried underground pipelines is rated as a very challenging research topic given the current level of technology. Therefore, a data-driven leak detection model was developed through this study using deep learning technology based on inflow meter data. Multiple threshold-based models were applied to reduce the RNN-LSTM (Recurrent Neural Networks–Long Short-Term Memory models) deep learning and false prediction range, which is programmed in conjunction with the Python language and Google Colaboratory (a big data analysis tool). The developed model consists of flow pattern shape extraction, RNN-LSTM-based flow prediction, and threshold setting modules. The developed model was applied to the actual leakage accident data, followed by the performance evaluation. As a result, the leak was recognized at most points immediately after the accident. The performance of leak detection was evaluated by a Confusion matrix and showed more than 90% accuracy at all points except singularities. Therefore, the developed model can be used as a critical software technology to proactively identify various at present with smart water infrastructure being introduced. In addition, this model is highly scalable as it can consider various operational situations based on the expert system, and it can also efficiently reflect the results of pipe network analysis across different scenarios.

Funder

K-water

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference31 articles.

1. Multiobjective Optimization of Rehabilitation and Leakage Detection Scheduling in Water Distribution Systems

2. Water Pipe Rehabilitation and Smart Safety Management System;Shin;Korean Soc. Civ. Eng.,2018

3. Trends and improvements in data-driven medium to large leak recognition models;Yoo;Water Future,2018

4. EPANET Users Manual;Rossman

5. Battle of the Attack Detection Algorithms: Disclosing Cyber Attacks on Water Distribution Networks

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3