State of the Art Offshore In Situ Monitoring of Microplastic

Author:

Calore Daniele,Fraticelli Nicola

Abstract

Microplastics make up a significant amount of the overall quantity of plastic debris that is present in seawater. However, their detection and monitoring at sea is cost-inefficient and challenging; typically, it consists of water sampling with special manta nets, followed by long (i.e., weeks) laboratory analysis to obtain valid results. The analysis of the state-of-the-art technologies capable of monitoring/detecting microplastics in the sea (typically in coastal areas) presented in this paper shows that there are currently no specific tools to obtain quick measurements. The classic multiparametric probes are useless and the contribution of their relative chemical–physical parameters to determine the presence of microplastics in water is insignificant. The evolution in the last decade of hardware and software tools for capturing hologram images and related post-processing seems to be one of the most effective methods available currently for the rapid detection of microplastics in seawater. In particular, some results of monitoring campaigns carried out in the Adriatic Sea using this type of technology are reported. The acquired data are analyzed and discussed, highlighting their strengths and weaknesses, with indications of the possible methodologies that could be used to improve these systems.

Publisher

MDPI AG

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3