Match-Level Fusion of Finger-Knuckle Print and Iris for Human Identity Validation Using Neuro-Fuzzy Classifier

Author:

Srivastava RohitORCID,Bhardwaj Ved PrakashORCID,Othman Mohamed Tahar BenORCID,Pushkarna Mukesh,Anushree ,Mangla Arushi,Bajaj MohitORCID,Rehman Ateeq UrORCID,Shafiq MuhammadORCID,Hamam HabibORCID

Abstract

Biometrics is the term for measuring human characteristics. If the term is divided into two parts, bio means life, and metric means measurement. The measurement of humans through different computational methods is performed to authorize a person. This measurement can be performed via a single biometric or by using a combination of different biometric traits. The combination of multiple biometrics is termed biometric fusion. It provides a reliable and secure authentication of a person at a higher accuracy. It has been introduced in the UIDIA framework in India (AADHAR: Association for Development and Health Action in Rural) and in different nations to figure out which biometric characteristics are suitable enough to authenticate the human identity. Fusion in biometric frameworks, especially FKP (finger–knuckle print) and iris, demonstrated to be a solid multimodal as a secure framework. The proposed approach demonstrates a proficient and strong multimodal biometric framework that utilizes FKP and iris as biometric modalities for authentication, utilizing scale-invariant feature transform (SIFT) and speeded up robust features (SURF). Log Gabor wavelet is utilized to extricate the iris feature set. From the extracted region, features are computed using principal component analysis (PCA). Both biometric modalities, FKP and iris, are combined at the match score level. The matching is performed using a neuro-fuzzy neural network classifier. The execution and accuracy of the proposed framework are tested on the open database Poly-U, CASIA, and an accuracy of 99.68% is achieved. The accuracy is higher compared to a single biometric. The neuro-fuzzy approach is also tested in comparison to other classifiers, and the accuracy is 98%. Therefore, the fusion mechanism implemented using a neuro-fuzzy classifier provides the best accuracy compared to other classifiers. The framework is implemented in MATLAB 7.10.

Funder

Qassim University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. Boosting Iris Recognition by Margin-Based Loss Functions

2. Finger-Knuckle-Print Recognition System based on Features-Level Fusion of Real and Imaginary Images;Attia;J. Image Video Processing,2018

3. FKPIndexNet: An efficient learning framework for finger-knuckle-print database indexing to boost identification

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3