Research on Distributed Multi-Sensor Cooperative Scheduling Model Based on Partially Observable Markov Decision Process

Author:

Zhang Zhen,Wu Jianfeng,Zhao Yan,Luo Ruining

Abstract

In the context of distributed defense, multi-sensor networks are required to be able to carry out reasonable planning and scheduling to achieve the purpose of continuous, accurate and rapid target detection. In this paper, a multi-sensor cooperative scheduling model based on the partially observable Markov decision process is proposed. By studying the partially observable Markov decision process and the posterior Cramer–Rao lower bound, a multi-sensor cooperative scheduling model and optimization objective function were established. The improvement of the particle filter algorithm by the beetle swarm optimization algorithm was studied to improve the tracking accuracy of the particle filter. Finally, the improved elephant herding optimization algorithm was used as the solution algorithm of the scheduling scheme, which further improved the algorithm performance of the solution model. The simulation results showed that the model could solve the distributed multi-sensor cooperative scheduling problem well, had higher solution performance than other algorithms, and met the real-time requirements.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aircrafts Scheduling Based Target Cooperative Tracking with Bearings-Only Measurements;2023 42nd Chinese Control Conference (CCC);2023-07-24

2. Energy-Efficient Distributed Task Scheduling for Multi-Sensor IoT Networks;IEEE Network;2023-03

3. A renewable energy-aware distributed task scheduler for multi-sensor IoT networks;Proceedings of the ACM SIGCOMM Workshop on Networked Sensing Systems for a Sustainable Society;2022-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3