An Improved Proximal Policy Optimization Method for Low-Level Control of a Quadrotor

Author:

Xue WentaoORCID,Wu HangxingORCID,Ye HuiORCID,Shao Shuyi

Abstract

In this paper, a novel deep reinforcement learning algorithm based on Proximal Policy Optimization (PPO) is proposed to achieve the fixed point flight control of a quadrotor. The attitude and position information of the quadrotor is directly mapped to the PWM signals of the four rotors through neural network control. To constrain the size of policy updates, a PPO algorithm based on Monte Carlo approximations is proposed to achieve the optimal penalty coefficient. A policy optimization method with a penalized point probability distance can provide the diversity of policy by performing each policy update. The new proxy objective function is introduced into the actor–critic network, which solves the problem of PPO falling into local optimization. Moreover, a compound reward function is presented to accelerate the gradient algorithm along the policy update direction by analyzing various states that the quadrotor may encounter in the flight, which improves the learning efficiency of the network. The simulation tests the generalization ability of the offline policy by changing the wing length and payload of the quadrotor. Compared with the PPO method, the proposed method has higher learning efficiency and better robustness.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3