Comparative Assessment of Shell Structural, Mechanical, and Elemental Properties in Adult Acorn Barnacles

Author:

Shaw Jazmine1,Kang Yeram1,Triano Callie1,Hoppe Corin J.1,Aldred Nick2,Metzler Rebecca A.3ORCID,Dickinson Gary H.1ORCID

Affiliation:

1. Department of Biology, The College of New Jersey, Ewing, NJ 08628, USA

2. School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK

3. Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346, USA

Abstract

Balanomorph (acorn) barnacles are found throughout the world’s coastal oceans, and their success is dependent on a hard, mineralized, outer shell. Although macro-scale morphology of barnacle shells has been studied extensively, relatively little is known about shell properties at the micron-scale and if such properties vary among species. We assessed shell structure, mechanics, and composition in seven species of balanomorph barnacles from five genera. Three species, Amphibalanus amphitrite, Amphibalanus improvisus, and Austrominius modestus, were laboratory-reared, enabling direct comparison of shell properties of barnacles grown under the same conditions for the same duration. Four other species, Semibalanus balanoides, Amphibalanus eburneus, Chthamalus stellatus, and Tetraclita rubescens, were field-collected. At the macro- and meso-scales, shell properties varied markedly among species, with differences in the number of shell plates, the presence of canals within the plates, mineralization of the base, and shell plate thickness. At the micron-scale, however, structure was remarkably similar among species. Plates of all species were constructed of irregular micron-scale crystallites, with a broad range of crystallite dimensions observed within the same shell. Similarly, micromechanical properties did not vary among species, regardless of testing orientation. Calcium carbonate was identified as calcite in all species assessed with no other mineral phases present, and calcium content did not vary among species. Hence, despite variation in the overall macro- and meso-scale morphology of barnacles, all appear to be built using the same, evolutionarily conserved, mineralization pathway.

Funder

NSF Divisions of Material Research

Publisher

MDPI AG

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3