Author:
Su Wei,Wang Shiyan,Liu Chang,Liu Xiaobo,Chen Kaiqi,Fan Hao,Wang Liang,Jiang Zhi,Li Budong,Hu Baoyue
Abstract
Numerous water quality risks exist during the initial water storage stage in reservoirs; however, little water quality data is available for this stage. Taking the Wudongde Reservoir as an example, we proposed a water quality risk sensitive area identification system for the initial impoundment stage comprising three modules: water quality assessment, water quality similarity clustering analysis, and sensitive area identification. Temporal and spatial variation in the water quality of the whole reservoir was analyzed, combined with a comprehensive evaluation using the Canadian Council of Ministers of the Environment Water Quality Index. A water quality similar clustering module was used to form similar clusters for monitoring sections in the reservoir area. The water quality risk sensitive areas were then identified and verified through a prototype test. The reservoir water quality was primarily excellent to good, although that of the Madian and Longchuan Rivers was poor. Through cluster analysis, the Madian River and tributaries of the Longchuan River were identified as sensitive areas, and the causes of water quality risk were analyzed. Based on these findings, we suggested focus areas for water environmental protection measures, providing a basis for the protection and restoration of the reservoir water environment.
Funder
Research on Calibration Validation and Application of Mathematical Model of Water Environment for Wudongde Hydropower Station
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献