Abstract
Matching local feature points is an important but crucial step for various optical image processing applications, such as image registration, image mosaicking, and structure-from-motion (SfM). Three significant issues associated with this subject have been the focus for years, including the robustness of the image features detected, the number of matches obtained, and the efficiency of the data processing. This paper proposes a systematic algorithm that incorporates the synthetic-colored enhanced accelerated binary robust invariant scalar keypoints (SC-EABRISK) method and the affine transformation with bounding box (ATBB) procedure to address these three issues. The SC-EABRISK approach selects the most representative feature points from an image and rearranges their descriptors by adding color information for more precise image matching. The ATBB procedure, meanwhile, is an outreach that implements geometric mapping to retrieve more matches from the feature points ignored during SC-EABRISK processing. The experimental results obtained using benchmark imagery datasets, close-range photos (CRPs), and aerial and satellite images indicate that the developed algorithm can perform up to 20 times faster than the previous EABRISK method, achieve thousands of matches, and improve the matching precision by more than 90%. Consequently, SC-EABRISK with the ATBB algorithm can address image matching efficiently and precisely.
Funder
Japan Society for the Promotion of Science
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献