Wear Mechanism Classification Using Artificial Intelligence

Author:

Sieberg Philipp MaximilianORCID,Kurtulan Dzhem,Hanke StefanieORCID

Abstract

Understanding the acting wear mechanisms in many cases is key to predicting lifetime, developing models describing component behavior, or for the improvement of the performance of components under tribological loading. Conventionally scanning electron microscopy (SEM) and sometimes additional analytical techniques are performed in order to analyze wear appearances, i.e., grooves, pittings, surface films, and others. In addition, experience is required in order to draw the correct and relevant conclusions on the acting damage and wear mechanisms from the obtained analytical data. Until now, different types of wear mechanisms are classified by experts examining the damage patterns manually. In addition to this approach based on expert knowledge, the use of artificial intelligence (AI) represents a promising alternative. Here, no expert knowledge is required, instead, the classification is done by a purely data-driven model. In this contribution, artificial neural networks are used to classify the wear mechanisms based on SEM images. In order to obtain optimal performance of the artificial neural network, a hyperparameter optimization is performed in addition. The content of this contribution is the investigation of the feasibility of an AI-based model for the automated classification of wear mechanisms.

Publisher

MDPI AG

Subject

General Materials Science

Reference41 articles.

1. Chapter 6 Sliding Wear;Gahr,1987

2. Tribologie Handbuch, 3. Hrsg;Czichos,2012

3. Verschleiß Metallischer Werkstoffe, 3. Hrsg;Sommer,2018

4. A review of two-body abrasive wear

5. The mechanism-based approach of understanding run-in and steady state: A gross-slip fretting experiment to fathom tribocorrosion of total hip taper junctions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3