Two-Step Geometry Design Method, Numerical Simulations and Experimental Studies of Bioresorbable Stents

Author:

Molęda NataliaORCID,Kokot GrzegorzORCID,Kuś Wacław,Sobota Michał,Włodarczyk JakubORCID,Stojko MateuszORCID

Abstract

The stent-implantation process during angioplasty procedures usually involves clamping the stent onto a catheter to a size that allows delivery to the place inside the artery. Finding the right geometrical form of the stent to ensure good functionality in the open form and to enable the clamping process is one of the key elements in the stent-design process. In the first part of the work, an original two-step procedure for stent-geometry design was proposed. This was due to the necessary selection of a geometry that would provide adequate support to the blood-vessel wall without causing damage to the vessel. Numerical simulations of the crimping and deployment processes were performed to verify the method. At the end of this stage, the optimal stent was selected for further testing. In addition, numerical simulations of selected experimental tests (catheter-crimping process, compression process) were used to verify the obtained geometrical forms. The results of experimental tests on stents produced by the microinjection method are presented. The digital image correlation (DIC) method was used to compare the results of numerical simulation and experimental tests. The two-step modeling approach was found to help select the appropriate geometry of the expanded stent, which is an extremely important step in the design of the crimping process. In the part of the paper where the results obtained by numerical simulation were compared with those gained by experiment and using the DIC method, a good compatibility of the displacement results can be observed. For both longitudinal and transverse (pinch) stent compression, the results practically coincide. The paper presents also the application of the DIC method which significantly expands the research possibilities, allowing for a detailed inspection of the deformation state and, above all, verification of local dangerous areas. This approach significantly increases the possibility of assessing the quality of the stents.

Funder

Silesian University of Technology

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3