Abstract
The thermal stability and structural, microstructural and magnetic properties of (40 + x) Fe–28Cr–(26 − x) Co–3Mo–1Ti–2V magnets with x = 0, 2, 4 addition in cobalt content were investigated and presented. The magnetic alloys were synthesized by vacuum arc melting and casting technique in a controlled argon atmosphere. Magnetic properties in the alloys were convinced by single-step isothermal field treatment and subsequent aging. The alloys were investigated for thermal stability, structural, microstructural and magnetic properties via differential thermal analysis (DTA), X-ray diffractometery (XRD), optical microscopy (OM), field emission scanning electron microscope (FESEM) and DC magnetometer. Metallurgical grains of size 300 ± 10 μm were produced in the specimens by casting and refined by subsequent thermal treatments. The magnetic properties of the alloys were achieved by refining the microstructure, the optimization of conventional thermomagnetic treatment to modified single-step isothermal field treatment and subsequent aging. The best magnetic properties achieved for the alloy 44Fe–28Cr–22Co–3Mo–0.9Ti–2V was coercivity Hc = 890 Oe (71 kA/m), Br = 8.43 kG (843 mT) and maximum energy product (BH)max = 3 MGOe (24 kJ/m3). The enhancement of remanence and coercivity enabled by the isothermal field treatment was due to the elongation of the ferromagnetic phase and step aging treatment due to the increase in the volume fraction. This work is interesting for spin-based electronics to be used for energy storage devices.
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献