Self-Centering Shape Memory Alloy-Viscoelastic Hybrid Braces for Seismic Resilience

Author:

Zhang Zhe-Xi,Ping Yiwei,He XiuzhangORCID

Abstract

This paper presents a novel type of hybrid self-centering braces incorporating tension-only superelastic NiTi shape memory alloy (SMA) cables and integrated viscoelastic dampers (VEDs). One of our reasons for proposing this new SMA-viscoelastic hybrid brace (SCVEB) is to provide enhanced energy-dissipation ability whilst promoting increased self-centering tendency compared with the existing SMA-based self-centering solutions, where upgrading behavior is mainly benefited from the participation of the VEDs. The configuration and the working principle, along with theoretical equations describing the mechanical behavior of the SCVEB, are described in detail firstly. Experimental verification of individual elements in this SCVEB system, namely the NiTi SMA cables and VEDs, was performed to obtain a basic understanding of their mechanical properties. A proof-of-concept SCVEB specimen was then manufactured, and its cyclic performance was further investigated. Followed by this, a system-level analysis on a series of steel frames equipped with or without SCVEB was conducted. The results showed that the SCVEB system exhibited a moderate damping ratio and a more efficient controlled behavior in terms of its post-event residual deformation and floor acceleration when compared with those of the non-SCVEB system.

Funder

National Natural Science Foundation of China

Shanghai Rising-Star Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3