Experimental Study and Comparison of Imbalance Ensemble Classifiers with Dynamic Selection Strategy

Author:

Zhao Dongxue,Wang Xin,Mu Yashuang,Wang LidongORCID

Abstract

Imbalance ensemble classification is one of the most essential and practical strategies for improving decision performance in data analysis. There is a growing body of literature about ensemble techniques for imbalance learning in recent years, the various extensions of imbalanced classification methods were established from different points of view. The present study is initiated in an attempt to review the state-of-the-art ensemble classification algorithms for dealing with imbalanced datasets, offering a comprehensive analysis for incorporating the dynamic selection of base classifiers in classification. By conducting 14 existing ensemble algorithms incorporating a dynamic selection on 56 datasets, the experimental results reveal that the classical algorithm with a dynamic selection strategy deliver a practical way to improve the classification performance for both a binary class and multi-class imbalanced datasets. In addition, by combining patch learning with a dynamic selection ensemble classification, a patch-ensemble classification method is designed, which utilizes the misclassified samples to train patch classifiers for increasing the diversity of base classifiers. The experiments’ results indicate that the designed method has a certain potential for the performance of multi-class imbalanced classification.

Funder

the Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3