Investigation by Digital Image Correlation of Mixed-Mode I and II Fracture Behavior of Polymeric IASCB Specimens with Additive Manufactured Crack-Like Notch

Author:

Brugo Tommaso Maria,Campione Ivo,Minak GiangiacomoORCID

Abstract

In this work, the fracture mechanics properties of polyamide (PA) specimens manufactured by the selective laser sintering (SLS) technology are investigated, in which an embedded crack-like notch was inserted in the design and produced during the additive manufacturing (AM) phase. To cover a wide variety of mode I/II mixity levels, the inclined asymmetrical semicircular specimen subjected to three points loading (IASCB) was employed. The investigation was carried out by analyzing the full displacement field in the proximity of the crack tip by means of the digital image correlation (DIC) technique. To characterize the material, which exhibits a marked elastic-plastic behavior, the quantity J-integral was evaluated by two different methods: the first one exploits the full fields measured by the DIC, whereas the second one exploits the experimental load–displacement curves along with FEM analysis. The DIC methodology was experimentally validated and proposed as an alternative method to evaluate the J-integral. It is especially suited for conditions in which it is not possible to use the conventional LDC method due to complex and possibly unknown loading conditions. Furthermore, results showed that the AM technique could be used effectively to induce cracks in this type of material. These two aspects together can lead to both a simplification of the fracture characterization process and to the possibility of dealing with a wider number of practical, real-world scenarios. Indeed, because of the nature of the additive manufacturing process, AM crack-like notches can be sintered even having complex geometry, being three-dimensional and/or inside the tested structure.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3