Abstract
Considering that compressive strength (CS) is an important mechanical property parameter in many design codes, in order to ensure structural safety, concrete CS needs to be tested before application. However, conducting CS tests with multiple influencing variables is costly and time-consuming. To address this issue, a machine learning-based modeling framework is put forward in this work to evaluate the concrete CS under complex conditions. The influential factors of this process are systematically categorized into five aspects: man, machine, material, method and environment (4M1E). A genetic algorithm (GA) was applied to identify the most important influential factors for CS modeling, after which, random forest (RF) was adopted as the modeling algorithm to predict the CS from the selected influential factors. The effectiveness of the proposed model was tested on a case study, and the high Pearson correlation coefficient (0.9821) and the low mean absolute percentage error and delta (0.0394 and 0.395, respectively) indicate that the proposed model can deliver accurate and reliable results.
Funder
National Natural Science Foundation of China
Central Universities in China
Subject
General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献