Short-Term Forecasting of Land Use Change Using Recurrent Neural Network Models

Author:

Cao Cong,Dragićević SuzanaORCID,Li SongnianORCID

Abstract

Land use change (LUC) is a dynamic process that significantly affects the environment, and various approaches have been proposed to analyze and model LUC for sustainable land use management and decision making. Recurrent neural network (RNN) models are part of deep learning (DL) approaches, which have the capability to capture spatial and temporal features from time-series data and sequential data. The main objective of this study was to examine variants of the RNN models by applying and comparing them when forecasting LUC in short time periods. Historical land use data for the City of Surrey, British Columbia, Canada were used to implement the several variants of the RNN models. The land use (LU) data for years 1996, 2001, 2006, and 2011 were used to train the DL models to enable the short-term forecast for the year 2016. For the 2011 to 2016 period, only 4.5% of the land use in the study area had changed. The results indicate that an overall accuracy of 86.9% was achieved, while actual changes in each LU type were forecasted with a relatively lower accuracy. However, only 25% of changed raster cells correctly forecasted the land use change. This research study demonstrates that RNN models provide a suite of valuable tools for short-term LUC forecast that can inform and complement the traditional long-term planning process; however, further additional geospatial data layers and considerations of driving factors of LUC need to be incorporated for model improvements.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference104 articles.

1. Assessing driving forces of land use and land cover change by a mixed-method approach in north-eastern Ghana, West Africa

2. Challenges with Inferring How Land-Use Affects Terrestrial Biodiversity: Study Design, Time, Space and Synthesis;de Palma,2018

3. Using Remote Sensing to Detect and Monitor Land-Cover and Land-Use Change;Green;Am. Soc. Photogramm. Remote Sensine.,1994

4. Advancing Land Change Modeling: Opportunities and Research Requirements,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3