A Sustainable, Regional Agricultural Development Measurement System Based on Dissipative Structure Theory and the Entropy Weight Method: A Case Study in Chengdu, China

Author:

Li Sipan,Gong QunxiORCID,Yang Shaolei

Abstract

As a large agricultural nation, China attaches great importance to agricultural development, as sustainable, regional agricultural development affects the sustainable development of China. Taking Chengdu, Sichuan Province as an example, this paper selected indicators and data from the past 15 years from the Chengdu Statistical Yearbook and applied the dissipative structure theory to establish an evaluation system for sustainable, regional agricultural development based on five main factors including economy, society, environment, education, and population. The entropy weight method was used to empower each indicator, and the changes in Chengdu’s sustainable agricultural development in the past 15 years were calculated. It was found that Chengdu’s sustainable agricultural development has been annually increasing, among which, economic and education subsystems had the greatest support for sustainable agricultural development. From 2003 to 2017, the entropy change of the total agricultural sustainable development system in Chengdu was negative, and the total entropy of the system gradually decreased. The sustainable agricultural development system in Chengdu has been developing towards a more orderly dynamic equilibrium state.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference33 articles.

1. A Framework for Empirical Assessment of Agricultural Sustainability: The Case of Iran

2. Sustainable development – historical roots of the concept

3. Comprehensive Study on Sustainable Development Ability of Agriculture in Sichuan Province;Sun;Rural Econ.,2008

4. Indicator System and Evaluation Method of Regional Agricultural Sustainable Development;Liu;Prog. Geogr.,1997

5. Dynamic Model Simulation of Heilongjiang Agricultural Sustainable Development System;Zeng;Chin. Agric. Sci. Bull.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3