Assessment of Wheat Straw Cover and Yield Performance in a Rice-Wheat Cropping System by Using Landsat Satellite Data

Author:

Memon Muhammad SohailORCID,Jun Zhou,Sun Chuanliang,Jiang Chunxia,Xu Weiyue,Hu Qiong,Yang Hangxu,Ji Changying

Abstract

Proper straw cover information is one of the most important inputs for agroecosystem and environmental modeling, but the availability of accurate information remains limited. However, several remote-sensing (RS)-based studies have provided a residue cover estimation and provided spatial distribution mapping of paddy rice areas in a constant field condition. Despite this, the performance of rice crops with straw applications has received little attention. Furthermore, there are no methods currently available to quantify the wheat straw cover (WSC) percentage and its effect on rice crops in the rice-wheat cropping region on a large scale and a continuous basis. The novel approach proposed in this study demonstrates that the Landsat satellite data and seven RS-based indices, e.g., (i) normalized difference vegetation index (NDVI), (ii) Normalized difference senescent vegetation index (NDSVI), (iii) Normalized difference index 5 (NDI5), (iv) Normalized difference index 7 (NDI7), (v) Simple tillage index (STI), (vi) Normalized difference tillage index (NDTI), and (vii) Shortwave red normalized difference index (SRNDI), can be used to estimate the WSC percentage and determine the performance of rice crops over the study area in Changshu county, China. The regression model shows that the NDTI index performed better in differentiating the WSC at sampling points with a coefficient of determination (R2 = 0.80) and root mean squared difference (RMSD = 8.46%) compared to that of other indices, whereas the overall accuracy for mapping WSC was observed to be 84.61% and the kappa coefficient was κ = 0.76. Moreover, the rice yield model was established by correlating between the peak NDVI values and rice grain yield collected from ground census data, with R2 = 0.85. The finding also revealed that the highest estimated yield (8439.67 kg/ha) was recorded with 68% WCS in the study region. This study confirmed that the NDVI and NDTI algorithms are very effective and robust indicators. Also, it can be strongly concluded that multispectral Landsat satellite imagery is capable of measuring the WSC percentage and successively determines the impact of different WSC percentages on rice crop yield within fields or across large regions through remote sensing (RS) and geographical information system (GIS) techniques for the long-term planning of agriculture sustainability in rice-wheat cropping systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3