Mathematical Model of Small-Volume Air Vessel Based on Real Gas Equation

Author:

Ni Weixiang,Zhang Jian,Shi Lin,Wang Tengyue,Zhang Xiaoying,Chen ShengORCID

Abstract

The gas characteristics of an air vessel is one of the key parameters that determines the protective effect on water hammer pressure. Because of the limitation of the ideal gas state equation applied for a small-volume vessel, the Van der Waals (VDW) equation and Redlich–Kwong (R–K) equation are proposed to numerically simulate the pressure oscillation. The R–K polytropic equation is derived under the assumption that the volume occupied by the air molecules themselves could be ignored. The effects of cohesion pressure under real gas equations are analyzed by using the method of characteristics under different vessel diameters. The results show that cohesion pressure has a significant effect on the small volume vessel. During the first phase of the transient period, the minimum pressure and water depth calculated by a real gas model are obviously lower than that calculated by an ideal gas model. Because VDW cohesion pressure has a stronger influence on the air vessel pressure compared to R–K air cohesion pressure, the amplitude of head oscillation in the vessel calculated by the R–K equation becomes larger. The numerical results of real gas equations can provide a higher safe-depth margin of the water depth required in the small-volume vessel, resulting in the safe operation of the practical pumping pipeline system.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3